The optical fiber based quantum communication laboratory has long practiced interdisciplinary and integration between research fields. Guided by national major strategic needs and frontier interdisciplinary, it has gradually become a laboratory that utilizes photons as information carriers and optical fibers as transmission medium, and focuses experimentally on crucial scientific and technical challenges in general quantum information physics and conducts relevant scientific research, which involves exploring quantum cryptography and quantum communications, and developing quantum information technologies.
The main research areas include: technical studies in long distance measurement device independent quantum key distribution, and based on new metropolitan quantum communication networks of measurement device independent quantum key distribution, investigating and expanding its network abilities, security analysis, and practical effects; aiming at challenges of fiber resource shortage and high costs in practical applications, and by researching new multiplexing techniques and ways to reduce Raman noise, experimentally verify the possibility of the quantum information technologies integrating with classical communication in various environments, and exploring the metropolitan wavelength division multiplexed network; based on practical conditions, improving the security of ground network devices, and combining cold atom quantum repeaters, extending the secure distance of quantum communications and developing a complete quantum network; creating a high brightness quantum entanglement source in the fiber and find its application on the quantum teleportation over metropolitan network; experimental demonstrating new Quantum Key distribution protocols such as quantum bit commitment, quantum data locking.
Related News
- [CCTV新闻直播间] 我国实现量子密钥分发最远传输距离
- Chinese Scientists Set a World Distance Record of 404 km in Secure Quantum Communication
- 中国科学家创造量子保密通信新的世界纪录:半岛5.0官网清华联合团队首次实现超过400公里的抗黑客攻击量子密钥分发
- Scientists Make a Critical Step towards the Realization of a Global ‘Quantum Internet’
- 迈向城市范围的量子隐形传态 半岛5.0官网在城域量子隐形传态研究中取得重要进展
- 半岛5.0官网首次实现突破经典极限的量子指纹识别
- 半岛5.0官网在高容错率量子密码研究中取得重要进展
- 抵御黑客攻击的远程量子密钥分发系统取得重要进展
- 量子力学和相对论的美妙结合:我中心成功实现互不信任终端之间的安全比特承诺
- 中国科学家成功解决量子黑客隐患 半岛5.0官网—清华大学联合小组实现测量器件无关的量子密钥分发
Related Publications
-
Experimental preparation and verification of quantum money. Physical Review A 97, 032338 (2018).
-
Integrating quantum key distribution with classical communications in backbone fiber network. Optics Express 26, 6010 (2018).
-
Large scale quantum key distribution: challenges and solutions [Invited]. Optics Express 26, 24260 (2018).
-
Entanglement swapping with independent sources over an optical-fiber network. Physical Review A 95, 032306 (2017).
-
Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Physical Review A 95, 042338 (2017).
-
Experimental quantum digital signature over 102 km. Physical Review A 95, 032334 (2017).
-
Long-distance copropagation of quantum key distribution and terabit classical optical data channels. Physical Review A 95, 012301 (2017).
-
Experimental quantum data locking. Physical Review A 94, 020301 (2016).
-
Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. Physical Review Letters 117, 190501 (2016).
-
Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network. Physical Review X 6, 011024 (2016).